Le mercredi 16 décembre 2020 à 9h00, Delio LUCENA-PIQUERO (doctorant au LEREPS) soutiendra sa thèse en sciences économiques, réalisée sous la direction de Jérôme Vicente et Stefano Ugolini, qui s’intitule :
En raison du contexte sanitaire, la soutenance se tiendra en visioconférence sur Zoom.
Le jury chargé d’évaluer la qualité du manuscrit se compose des membres suivants :
Clemens JOBST, Professeur d’Histoire Économique et Sociale, Université de Vienne (Rapporteur) ;
Francesc-Xavier MOLINA-MORALES, Professeur de Sciences de Gestion, Université Jaume I de Castellón de la Plana (Rapporteur) ;
Elisa GIULIANI, Professeur de Sciences de Gestion, Université de Pise ;
Elvira UYARRA, Maître de Conférences en Économie, Université de Manchester ;
Jérôme VICENTE, Professeur d’Économie, Sciences Po Toulouse (Directeur) ;
Stefano UGOLINI, Maître de Conférences en Économie, Sciences Po Toulouse (Co-Directeur).
Abstract
In the recent decades, Social Network Analysis has become increasingly popular in economics. This thesis focuses on “horizontal” and “vertical” meso economic structures, which we associate to affiliation and interaction networks respectively.
In Chapter 1, we argue that the place-based methodology is a convenient tool for the study of "horizontal" meso-structures in affiliation networks, while hyperstructures are a convenient tool for the study of "vertical" meso-structures in interaction networks. These insights are henceforth put to work in two empirical applications, relating to innovation and finance respectively.
Chapters 2 and 3 situate themselves within the field of innovation studies, and address the effect of R&D policies on collaborative innovation networks (which represent affiliation relationships) using the place-based methodology, which builds on structural equivalence. The structural equivalence approach allows to identify agents sharing the same structural position (viz., agents under the same relational resources and constraints) and thus to obtain the “skeleton” of affiliation networks. This enables us to overcome some biases and limitations of classical analysis and to provide new insights on innovation as collective action.
Chapters 4 and 5 situate themselves in the field of financial economics, and study the structure of the global financial network during the First Globalisation. We focus on the origination and distribution chains of money market instruments (which represent interaction relationships), and show that the interdependence of the roles played by agents in chains helped overcome information asymmetries and generate a highly resilient financial system. In order to study chains as supra-dyadic structures, we use hypergraphs : this original approach allows us to overcome the misinterpretations potentially induced by classical methodologies (as e.g. simple or multilayer n etworks) and thus to underscore the structural properties of the global financial network.